
Environmental Challenges 15 (2024) 100937

Available online 13 May 2024
2667-0100/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Predicting trail condition using random forest models in urban-proximate 
nature reserves 

Kira Minehart a,*, Ashley D’ Antonio a, Noah Creany b, Chris Monz b, Kevin Gutzwiller c 

a Department of Forest Ecosystems and Society at Oregon State University, 2555 SW Pickford St. Apt. A, Corvallis, OR 97333, United States 
b Department of Environment and Society and Institute of Outdoor Recreation and Tourism at Utah State University, United States 
c Department of Biology, Baylor University, United States   

A R T I C L E  I N F O   

Keywords: 
Visitor use monitoring 
Park management 
Crowdsourced data 
Recreation ecology 
Trail degradation 
Random forest models 

A B S T R A C T   

Monitoring and managing the condition of recreational trails is a time- and resource- intensive process often 
requiring significant field data. We developed a method for predicting trail condition over 183 km of trails in 
three urban-proximate nature reserves in Orange County, California using field data from 118 km of trails and 
random forest (RF) models. Further, we use data from the fitness tracking application Strava to measure rec
reation use intensity, activity type, and spatial dimensions of visitor use. Our results indicate 30 km of trails in 
two nature reserves that are at risk of significant trail degradation. Additionally, trail grade, NDVI, and use- 
related factors such as activity type and use intensity were ranked among the most important variables for 
predicting trail condition. Variable importance measures produced by RF models can help inform site-specific 
trail management that takes environmental, managerial, and use-related factors into account. We argue that 
RF models, in combination with Strava data, are powerful tools for outdoor recreation monitoring and 
management.   

1. Introduction 

1.1. Modeling trail condition 

Recreational trails serve many purposes. They facilitate the recrea
tional use of landscapes by providing a transportation network through a 
given area (Leung and Marion, 1996) and specialized recreational op
portunities, such as mountain biking or equestrian use through inten
tional design (Webber and IMBA, 2007). Additionally, they protect 
ecological and cultural resources by concentrating use on hardened 
surfaces (Hammitt et al., 2015). 

Understanding the condition of recreational trails is an important 
consideration for protected area managers and outdoor recreationists 
alike. Protected area managers may want to know the condition of trails 
to provide site-specific maintenance or visitor education on trail use 
(Marion, 2023; Marion and Wimpey, 2017). Outdoor recreationists may 
prefer trails based on trail condition, surface type, width, grade, or 
amount of use (Korpilo et al., 2018; Lynn and Brown, 2003). However, 
mapping, monitoring, and communicating the condition of trails is often 
spatially and/or temporally restricted due to the time and effort required 
to collect and analyze trail data. 

Data on trail condition are often collected by traveling the trail by 
foot and recording parameters of interest on a handheld GPS unit, tablet, 
or similar device. Parameters of trail condition may include trail width, 
depth, surface type, presence of roots or gullying, vegetation damage, 
and condition class (Hammitt et al., 2015; Olive and Marion, 2009). 
Trail condition class is a common method for documenting recreational 
impacts to trails, where classes range from 1 to 5 (see Table 1 in Sup
plemental Material). Generally, class 1 trails are least disturbed, while 
class 5 trails are most degraded, either because of poor design, improper 
type or amount of use, or environmental conditions. Class 4 and class 5 
trails are more likely to exhibit ‘trail degradation,” a phenomenon by 
which the physical, ecological, and/or aesthetic qualities of trails are 
compromised (Leung and Marion, 1996). A large body of research uses 
this ranking system to classify and monitor recreational trails (Monz 
et al., 2010; Spernbauer et al., 2023). 

Several studies have assessed trail condition by pairing field data 
with computational techniques, but most occur within a single protected 
area or trail (i.e., Olive and Marion 2009, Spernbauer et al. 2023, 
Tomczyk and Ewertowski 2015). There is also a growing interest among 
researchers and managers to map, monitor, and model trails through less 
field-intensive methods. One study used GIS to estimate conditions over 
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1700 km of tracks (multi-use trails) in Tasmania, Australia; their results 
indicated 50 % prediction accuracy rates (Hawes et al., 2013). Rice et al. 
(2019) developed a low-cost method to identify undesignated trail use 
using heatmap data from the fitness tracking application Strava in three 
U.S. protected areas. Another study used drones to collect aerial imagery 
of trail degradation, including vegetation trampling, soil erosion, and 
changes in trail width and depth (Ancin-Murguzur et al., 2020). 

Our study predicts trail condition class in three southern California 
urban-proximate nature reserves with a goal of identifying locations of 
potential trail degradation. We used a combination of GPS-collected 
field data and GIS data to predict the trail condition class of unmoni
tored trails using random forest (RF) modeling, where unmonitored 
trails represent 183 km of trails that were not mapped in-field. We 
integrate crowdsourced data from the fitness tracking application Strava 
to measure use intensity, activity type, and location of use. Further, we 
paid special attention to common challenges to using RF with spatial- 
ecological data such as spatial-autocorrelation and the careful section 
of predictor variables. Only one study (to date) has used RF to assess trail 
condition, it used relatively few sample points (n = 200) over one 24 km 
trail and did not include predictors related to visitor activity type or use 
intensity (Sahani and Ghosh, 2021). We further this discourse by using 
RF to predict trail conditions over 183 km of trail via 19 predictors 
related to the ecological, managerial, and social determinants of trail 
condition. 

1.2. Using random forest models on spatial-ecological data 

Random forest models have gained popularity for analyzing complex 
spatial-ecological data (Cutler et al., 2007; Lucas, 2020). RF can handle 
large, unstructured datasets (Breiman, 2001) and often outperforms 
traditional linear or logistic regression in both classification and 
regression in its predictive power (Cutler et al., 2007; Hengl et al., 
2015). RF operates by constructing many individual decisions and 
deriving predictions through averaging (regression) or majority vote 
(classification). Although well-designed RF models yield high-accuracy 
predictions and valuable insights into variable importance, poorly 
designed models can produce overly optimistic or incoherent results 
(Gutzwiller and Serno, 2023; Wadoux et al., 2021). 

An unresolved challenge in using RF on spatiotemporal data is 
autocorrelation (Tonini et al., 2020). Although RF is a non-parametric 
method and does not require independent observations, many scholars 
suggest that autocorrelation may impact RF results (Gutzwiller and 
Serno, 2023; Meyer et al., 2019; Ploton et al., 2020). Autocorrelation 
can be a particular problem in clustered data, such as spatially or 
temporally sequential observations made along trails. It can be assumed 
that two nearby locations on a trail will be more similar (ecologically, 
geologically, and recreation use-wise) than will two points that are 
farther apart. 

Several techniques have been proposed to address spatial autocor
relation in RF models. One approach suggests including geolocated 
predictors, such as latitude, longitude, and distance to predetermined 
points to account for the spatial nature of the data (Hengl et al., 2018a). 
Alternatively, a comparative study on spatial autocorrelation in RF 
models found that using probabilistic sampling and design-based infer
ence resulted in less bias in results compared to spatial cross-validation 
or buffered leave-one-out cross validation (Wadoux et al., 2021). We 
follow the recommendations of Wadoux et al. (2021) and used proba
bilistic sampling to collect data points used in the RF analysis. 

1.3. Selecting appropriate predictor variables for RF 

Increasing evidence suggests that RF models are affected by the 
character and structure of predictor variables (Baltensperger, 2018). 
Some research suggests that geolocated variables can improve RF model 
performance (Hengl et al., 2018b); others disagree (Meyer et al., 2019). 
In this work, we compare the performance of two models, one with and 

one without geolocated variables (latitude, longitude, and Euclidean 
distance to the center of the nature reserve) to explore this 
disagreement. 

Baltensperger (2018) noted another challenge posed by RF models is 
their bias toward high-level categorical (HLC) variables, defined as 
those with greater than 20 classes. He found a decrease in overall ac
curacy when HLCs were included compared to when they were 
excluded; he argued that RF provides the least biased results when 
categorical predictors have 5 to 15 classes. Unfortunately, 
spatial-ecological data are often represented by HLCs, including soil, 
vegetation, or land cover type, all of which can be important de
terminants of trail condition. Best practices for using RF state that where 
appropriate, HLCs should be represented as continuous data or omitted 
altogether (Baltensperger, 2018). We integrated categorical and 
continuous variables for vegetation in place of a HLC dataset on vege
tation type and omitted soil type because it is most commonly repre
sented as a HLC variable. 

Finally, RF may perform poorly on categorical data with uneven class 
distribution because classes with few samples may be entirely omitted 
from the training data (More and Rana, 2017). This problem can be 
reduced by ensuring that all values have an equal chance of being 
included in the training and predictor data through probabilistic sam
pling (Wadoux et al., 2021). When probabilistic sampling is used and a 
class imbalance remains, balanced accuracy should be reported and 
interpreted in addition to overall accuracy (Akosa, 2017). We follow 
these recommendations as our trail condition dataset has a class 
imbalance. 

1.4. Using the Strava Global Heatmap 

Research on visitor use management often requires data on use in
tensity, type of use, and location of use. Further, the condition of trails is 
partially determined by the amount of recreational use they receive. 
Trail use intensity is measured via self-counting at trailheads, direct- 
counting using observers, indirect counting through automatic count
ing devices, and more recently, crowdsourced methods. Each method 
requires varying investments in time, technology, and financial re
sources (D’Antonio et al., 2010; Norman and Pickering, 2017). Direct 
and indirect counting, while effective for measuring use intensity with 
high accuracy, capture a small spatial and/or temporal subset of users, 
and many protected areas lack large-scale data on spatial and temporal 
patterns of trail use. This is especially true of informal (visitor created) 
trails, which often lack data on visitor use altogether (Rice et al., 2019). 

Recently, Strava has been used to measure and monitor trail use in 
protected areas (Rice et al., 2019; Venter et al., 2023). Strava is a fitness 
tracking application popular among runners and cyclists with over 120 
million global users as of January 2024 (Strava Inc., 2024). The app, 
available via GPS-enabled devices, records information on recreational 
activities including a GPS track, average speed, distance traveled, and 
elevation gain and uploads this information to the web. Compared to 
other fitness tracking applications, Strava may pose the greatest po
tential for long-term visitor use monitoring due to its widespread 
availability, ease and cost of use, and ability to detect use on informal 
locations, particularly in urban-proximate or fitness-oriented locales 
(Norman and Pickering, 2017; Venter et al., 2023). 

Our study uses a feature called the Strava Global Heatmap (SGH) to 
quantify visitor use intensity. The SGH depicts aggregated user data for 
various outdoor recreation activities from its inception in 2017 to date 
(Strava Inc., 2022). Publicly available as an interactive webpage, the 
SGH depicts areas of high intensity use as a more saturated hue (or a 
value 255 on the RGB hue scale) whereas areas of moderate to low use 
intensity show decreasing hue values (down to 0). The SGH makes visual 
the spatial distribution, use-intensity, and type of recreational activities 
that occur in a landscape at relatively fine spatial scales. It serves as a 
useful tool to monitor both formal and informal trail use in parks and 
protected areas. 
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Data from Strava have been used in several spatial-ecological rec
reation management studies (i.e., Rice et al. 2019, Jäger et al. 2020). 
Corradini et al. (2021) incorporated the SGH to create a Cumulative 
Outdoor Activity Index map to reveal where alpine brown bear (Ursus 
arctos) behavior was impacted by human presence in the Italian Alps. 
The authors validated SGH data with camera trap data on visitor use and 
found a positive, statistically significant correlation (Corradini et al., 
2021). Creany et al. (2020) used Strava data to examine visitor use in the 
same network of southern California urban-proximate nature reserves 
we studied and found that Strava was the fitness tracking application 
with the highest reported use over the study area. Finally, Venter et al. 
(2023) found that Strava data capture spatial variation of recreational 
activity quite well (r2 = 0.9) when compared to in-situ observations, but 
they found that Strava users were not representative of all outdoor 
recreationists. Representation poses a notable limitation when using 
Strava data to examine visitor demographics and preferences, but this 
concern is minimized when Strava is used to assess the spatial di
mensions of recreation use. We use data from the SGH to incorporate use 
intensity, use location, and type of use into our RF model. 

1.5. Study objectives 

This study addresses several questions that serve both the recreation 
management and spatial-ecological data science communities. 

1. Can RF models be used to predict trail condition in large nature re
serves using a subset of field-mapped data?  

2. Which variables are most influential in predicting trail degradation 
in Southern California urban-proximate nature reserves?  

3. Can data from the Strava Global Heatmap be used to represent visitor 
use in RF models?  

4. To what extent do geolocated variables affect RF model 
performance? 

By addressing these questions, we contribute useful information to a 
growing body of knowledge on best practices for applying RF models 
and spatial-ecological data to recreation management. 

2. Materials and methods 

2.1. Study area 

Our study occurs in three urban-proximate nature reserves in 
southern California: Alisoand Woods Canyon Regional Park (ALWO), 
Crystal Cove State Park (CCSP), and Whiting Ranch Wilderness Park 
(WHRA) (Fig. 1). ALWO, CCSP, and WHRA are part of a collaboratively 
managed network of protected areas called the Nature Reserve of Or
ange County (NROC). NROC consists of 22 open-space parks and pre
serves that provide critical habitat for coastal migratory birds and 
mammals as well as year-round outdoor recreation for 3.2 million res
idents of Orange County. Reserve units are managed under various 
designations, but a nonprofit organization, the Natural Communities 
Coalition (NCC) coordinates educational, managerial, and research ef
forts across the Reserve (Natural Communities Coalition, 2022). 

ALWO, CCSP, and WHRA contain unimproved (dirt) trails, paved 
walkways, and gravel roads open to foot travel (hiking and running), 
cycling, and equestrian use, all referred to as “trails” hereafter. The 
official websites for ALWO, WHRA, and CCSP state that each location 
has 48, 48, and 29 km of official recreational trails, respectively (Cali
fornia State Parks, 2023; OC Parks, 2023a, 2023b). Many additional 
kilometers of informal trails were identified by reserve managers and the 
SGH (Strava Inc., 2022). This study used data from both the formal and 

Fig. 1. The condition class of field-mapped trails and the locations of unmonitored trails in the three study sites. Table 1 describes the condition classes used in 
this study. 
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informal trails to predict condition class on unmonitored trails. 

2.2. Model comparisons 

To date, there is insufficient evidence on the effect of geolocated 
predictor variables (like latitude, longitude, and other spatially explicit 
measurements) on RF model performance. We compared two models to 
determine how geolocated variables (latitude, longitude, and the 
Euclidean distance to the center of the nature reserve) impacted model 
performance (Table 1). 

2.3. Data resources 

2.3.1. Response data 
Field data on trail condition class were collected over 118 km (40 %) 

of informal and formal trails in the three study sites during summer 
2019. Trained field technicians walked along the trail and recorded 
condition class on a scale of 1 to 5 on a Trimble Geo7x (Trimble, Inc., 
2023). Approximately 183 km (60 %) of trails in the three study sites 
were not mapped in this effort (see Table 2 in Supplemental Material). 
We sought to predict the trail condition class on these unmonitored trails 
using a RF model trained on the field-collected data. 

Only 4.15 % of the field-mapped trails were class 1 or 5 (0.67 km, or 
0.57 % of the length of mapped trails and 2.24 km or 3.58 %, respec
tively.) Given that RF models can be impacted by uneven class sizes, we 
reclassified the data to improve the balance of the distributions (More 
and Rana, 2017). We combined class 1 and 2 trails into a “class 1–2″ 
category and class 4 and 5 became “class 4–5″ to produce a more evenly 
distributed dataset (Fig. 2 in Supplemental Material). For our purpose, 
the model need not differentiate between “very disturbed” (class 4) and 
“most disturbed” (class 5) trails. 

2.3.2. Predictive data 
Per the recommendations of Marion (2023), we assessed the relative 

influence of various managerial, environmental, and use-related factors 
on determining trail condition using RF models (Marion, 2023). Data on 
21 predictive variables were initially identified as potential de
terminants of trail condition. However, highly correlated predictors can 
produce overoptimistic results and misguided variable importance 
measures in RF models and should be removed (Fig. 3 in Supplemental 
Material) (Nicodemus et al., 2010). We calculated Spearman’s rho for 
numeric predictors and removed those with rs > 0.80 (Akoglu, 2018). 
After removing the correlated variables, 19 predictors remained 
(Table 2). In random forest models, dummy variables are used to 
represent categorical predictors; each level of a categorical predictor is 
represented as a binary variable. This increased the total number of 
predictors from 19 to 51 in model 1 (Wright and König, 2019). 

We obtained the geolocated variables used in model 1 (latitude, 
longitude, and distance to center) in QGIS, version 3.16 Hannover 
(QGIS, 2024). Distance to center was calculated as the Euclidean dis
tance from the sample point to the centroid of the reserve in which it was 
contained. Park was included to examine the influence of each unique 
reserve on trail condition. We calculated the Euclidean distance from the 
sampling point to the nearest identifiable trailhead or access point 
identified on Google maps and included this as the distance to trailhead 
predictor. Landform-related variables such as elevation, slope, and 
aspect have been shown to contribute to trail condition (Tomczyk and 

Table 1 
Descriptions of each model including type and quantity of predictors.  

Model 
name 

Predictors Total predictors 
used 

Model 1 Includes geolocated predictors latitude, 
longitude, and distance to center 

19 

Model 2 Geolocated predictors removed 16  

Table 2 
Descriptions of variables used in the analysis.  

Elements Data Type & 
Units 

Description Data Sources 

Trail Condition 
Class 

Ordinal Less disturbed (Class 1-2) 
Disturbed (Class 3) 
Most disturbed (Class 4-5) 

Field-mapped 
data from 
2019 

Latitude Continuous 
(Decimal 
degrees) 

UTM coordinates Derived in 
GIS 

Longitude Continuous 
(Decimal 
degrees) 

UTM coordinates Derived in 
GIS 

Distance to 
Center 

Continuous 
(Meters) 

Euclidean distance from 
sample point to center 
(centroid) of the reserve 

Derived in 
GIS 

Park Nominal Reserve name Provided by 
NCC 

Trail Grade 
(local) 

Continuous 
(Percent) 

Steepness of trail over 100 
m trail segment 

Derived in 
GIS 

Trail Grade 
(trail- 
averaged) 

Continuous 
(Percent) 

Average steepness of entire 
unique trail 

Derived in 
GIS 

Trail Slope 
Alignment 
(TSA) 

Continuous 
(Degrees) 

Difference between 
azimuth of prevailing 
landform slope and the 
trail alignment angle (0: 
fall-line trails, 90: side-hill 
trails) 

Derived in 
GIS from 
DEM 

Distance to 
Trailhead 

Continuous 
(Meters) 

Euclidean distance from 
sample point to nearest 
trailhead identified on 
Google Maps 

Derived in 
GIS 

Designation Nominal Formal (0), known 
informal trail (1), or 
unknown informal trails 
identified on Strava (2) 

Provided by 
NCC and the 
SGH 

Pedestrian Use 
Intensity 

Continuous Pedestrian (foot travel) use 
intensity at sample point 
from the SGH rescaled to 
0 (no use) to 100 (most 
use) 

SGH 

Bike Use 
Intensity 

Continuous Cycling use intensity at 
sample point from the SGH 
rescaled to 0 (no use) to 
100 (most use) 

SGH 

Aspect Nominal Aspect at sample point; 
North, Northeast, East, 
Southeast, South, 
Southwest, West, 
Northwest 

Derived from 
USGS DEM 

Slope Continuous 
(Degrees) 

Slope at sample point Derived from 
USGS DEM 

Elevation Continuous 
(Meters) 

Elevation at sample point Derived from 
USGS DEM 

NDVI (at 
sample 
point) 

Continuous 
(NDVI value 
from -1 to 1) 

NDVI at sample point Provided by 
NCC 

NDVI (trail- 
averaged) 

Continuous 
(NDVI value 
from -1 to 1) 

NDVI averaged over the 
entire trail 

Provided by 
NCC 

Shrub Cover Ordinal 
(0: No coverage, 
9: Most 
coverage) 

Cover of shrub vegetation 
at sample point 

Provided by 
NCC 

Herb Cover Ordinal 
(0: No coverage, 
9: Most 
coverage) 

Cover of herbaceous plants 
including grasses, sedges 
and forbs at sample point 

Provided by 
NCC 

Riparian Cover Ordinal 
(0: No coverage, 
9: Most 
coverage) 

Cover of riparian 
vegetation at sample point 

Provided by 
NCC  
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Ewertowski, 2015). These data were extracted from USGS DEM datasets 
(U.S. Geological Survey, 2019). 

Significant research shows that trail designation influences trail 
condition (Spernbauer et al., 2023; Wimpey and Marion, 2011). Formal 
trails are often intentionally designed, guided by specific rules and 
regulations, and maintained more regularly than informal (visitor 
created) trails (Marion, 2023a; Webber and IMBA, 2007). We included a 
three-class categorical variable “designation” to distinguish formal trails 
from two types of informal trails: those that were included in the dataset 
provided by managers and those identified via the Strava Global Heat
map (presumably unknown to managers). 

We incorporate two aspects of trail construction that are thought to 
influence trail condition: trail grade and trail slope alignment (Leung 
and Marion, 1996; Olive and Marion, 2009). We calculated the 
maximum trail grade along 100 m segments of trail (as opposed to the 
entire trail) to capture local differences and account for differences in 
trail length, similar to measurements by Hawes et al. (2013). We also 
included trail grade averaged over the entire individual trail. In QGIS, 
we calculated trail grade according to Eq. (1). We calculated trail slope 
alignment (TSA) by finding the difference between the line bearing and 
azimuth of each 100-meter trail segment. Then, we subtracted 90 from 
values over 90 to achieve final TSA values between 0 and 90 per Cakir 
(2005) and Spernbauer et al. (2023).  

The amount of use a trail receives, as well as the type of use, is 
thought to impact trail condition (Olive and Marion, 2009; Pickering 
et al., 2010). We collected pedestrian-use intensity (foot travel including 
running and hiking) and bike-use intensity data from the SGH using the 
methods documented by Corradini et al. (2021) (Fig. 4 in the Supple
mental Material). Use intensity data from the SGH were validated 
against TRAFx brand automatic trail counter data from six trails in 
ALWO and CCSP (TRAFx Research, Ltd, 2023). Spearman correlations 
showed that bike-use intensity was poorly correlated with trail counter 
data (rs = 0.543); however, pedestrian-use intensity was strongly 
correlated with the counter data (rs = 0.943). Jäger et al. (2020) re
ported similar issues related to correlation with Strava data, likely due to 
the mismatch of timeframes used to collect the data and the very small 
quantity of available trail counter data. However, a 2023 review showed 
that Strava data are generally representative of spatial dimensions of 
recreation use, especially in urban-proximate and/or fitness focused 
locations (Venter, 2023).We consider Strava an appropriate source for 
understanding where visitors are recreating in our study system, an 
urban-proximate system used by recreationists with fitness-focused 
motivations. 

Vegetation type is thought to influence trail condition (Cole, 1983; 
Leung and Marion, 1996). Vegetation data were provided by project 
partner NCC; they commissioned a high-resolution aerial vegetation 
survey from 2016 to 2019 (Aerial Information Systems, Inc., 2015). 
These data included percent cover of shrubs, herbaceous plants (grasses, 
forbs, and sedges), and riparian vegetation communities. Coverage data 
were represented as an ordinal categorical variable where 0 corre
sponded to 0 % cover and 9 represented near 100 % coverage of the 
vegetation type (over the individual patch). We opted to use this 
coverage data (9 classes) instead of the vegetation community type (46 
classes), given that RF models can produce incoherent results when HLC 
variables are used (Baltensperger, 2018). Vegetation condition was also 
reported through NDVI, where NDVI is a remote sensing measurement 
that captures vegetation greenness that ranges from -1 (water) to 1 (very 

green vegetation) (Bhandari et al., 2012; Sahani and Ghosh, 2021). 
NDVI data were collected during an aerial imaging survey in 2019 
around the same time as field data on condition class. Both NDVI at the 
sample point and the trail-averaged NDVI were used in this study; the 
latter was computed as the average NDVI within a 5-meter buffer of the 
individual trail. 

All raster data (elevation, slope, aspect, NDVI, distance to trailhead) 
were resampled to a resolution of 2.5 m using nearest neighbor resam
pling to achieve consistency with the coarsest grain data (from the SGH). 
This effort ensured that differences between model performance metrics 
and variable importance measures were due to actual phenomena and 
not scale discrepancies (Sinha et al., 2019). 

2.3.3. Sampling design 
We used systematic random sampling to collect points from the 

training/testing data and the unmonitored trails to predict. Trails were 
split into 100-meter segments and five points were randomly selected 
per 100-meter segment with a minimum distance of 20 m between 
points (Fig. 5 in Supplemental Material). This ensures that points do not 
fall within the same pixel, that all field-mapped trails were included, and 
that points were evenly dispersed throughout the length of each trail. A 
total of 3600 points were selected from 118 km of field-mapped trails for 
the training/testing dataset. The same approach was used to select 5160 

points from 183 km of unmonitored trails. For each dataset, data from 
the predictor variables were extracted using vector and raster-based 
tools in QGIS. 

2.3.4. Random forest models 
The dataset including condition class information was loaded into 

RStudio Version 4.3.1 (RStudio Team, 2020) and randomly split: 75 % 
for training and 25 % for testing (Lantz, 2013). We performed hyper
parameter tuning on the training data to optimize model performance 
via identifying the appropriate mtry and ntree values, where mtry is the 
number of variables to include in each split, and ntree is the number of 
individual trees grown in the model (Table 3 in Supplemental Material). 
Mtry values both lower and higher than the default value (square root of 
the number of predictors) were tested for both models (2, 4, 6, 8, and 
10), and we used ntree values of 500, 1000, and 1500 (Probst and 
Boulesteix, 2019). We ran the models using standard 10-fold cross 
validation to obtain performance metrics the R package ‘caret’ (Kuhn, 
2008). 

We compared the two models’ performances based on several met
rics: out-of-bag (OOB) error, overall accuracy, balanced accuracy, 
sensitivity, and specificity. OOB error is an estimate of the model’s ac
curacy. OOB error compares the condition class the model predicted to 
the known condition class values in the test data. Balanced accuracy 
considers the model’s predictive power for each class individually and is 
calculated as the mean of sensitivity and specificity for each class. 
Sensitivity is a measure of the model’s ability to distinguish true 

Table 3 
Performance metrics OOB error and overall accuracy for both models.   

Description OOB 
Error 

Accuracy 

Model 
1 

Includes geolocated predictors latitude, 
longitude, and distance to center 

16.33 % 86.54 % 

Model 
2 

Without geolocated variables 15.48 % 86.65 %  

Trail Grade = (Max (segment elevation) − Min (segment elevation)) / Length (segment). (1)   
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positives and specificity is the ability to detect true negatives. Finally, 
we used the models to obtain condition class predictions on the un
monitored trails; results were visualized in QGIS (QGIS, 2024). 

3. Results 

3.1. Model performance 

Both models reported similar performance metrics; model 2 (without 
geolocated variables) reported 0.11 % higher overall accuracy 
compared to model 1 (Table 3). Additionally, model 2 reported a lower 
out-of-bag (OOB) error rate. 

Class-specific results are useful metrics for RF classification prob
lems, particularly for unbalanced data. Both models reported high (>94 
%) sensitivity scores for class 3, suggesting an ability to predict true 
positives for this condition class quite well (Table 4). Further, both 
models reported high specificity scores for class 1-2 and 4-5 (>98 % and 
>95 %, respectively), suggesting that the models predict true negatives 
for these condition classes with high accuracy. The lower sensitivity 
scores for class 1-2 and class 4-5 suggest that the models are not as 
capable of accurately predicting true positives for these classes, how
ever, model 2 outperformed model 1 in its ability to predict true posi
tives for class 4–5 (64.46 % and 59.64 %, respectively). 

The distributions of condition class predictions differed somewhat 
(Fig. 6 in Supplemental Material). Model 2 predicted more class 4-5 
points compared to model 1 (502 compared to 207). Model 1 pre
dicted no class 1–2 points whereas model 2 predicted 54 class 1-2 points. 

3.2. Variable importance 

The variable importance measure used here was the area under the 
receiver operating characteristic curve (AUC hereafter). AUC is 
computed as 1 - Sensitivity and is a meaningful representation of variable 
importance in classification problems (Hanley and McNeil, 1982; Ling 
et al., 2003). Importantly, AUC is more robust to data with class 
imbalance than other RF variable importance measures, particularly 
Mean Decrease Gini (Janitza et al., 2013; Strobl et al., 2007). Further, 
AUC reports class-specific variable importance, revealing which vari
ables contribute most to our phenomena of interest: trail degradation 
(represented by class 4–5 predictions). Importance values for each 
predictor were scaled to 100 to interpret differences among models; the 
top 20 predictors (in descending order of importance for class 4-5 pre
dictions) are shown in Fig. 2. See Figs. 7 and 8 in Supplemental Material 
for importance plots that include all predictors. 

Both models identified trail grade (at the sample point) as the most 
important variable for predicting condition class 4-5. Trail grade (trail- 
averaged) was among the top 3 for both models. Trail-averaged NDVI 
was also among the top predictors for both models. In model 1, geo
located predictors longitude, latitude, and distance to center were 
ranked in the top quartile. 

Pedestrian and bike-use intensity ranked consistently higher than all 
vegetation coverage variables and most landscape-related factors except 
elevation, which ranked among the top 10 for both models. Elevation 

ranked consistently higher than other landform-related variables (slope 
or aspect), neither of which ranked among the top 20 importance 
measures for either model. 

Both NDVI measures (at the sample point and trail-averaged) ranked 
consistently higher than any of the vegetation coverage variables. 
However, dummy variables corresponding to shrub cover received 
consistently higher importance scores compared to other vegetation 
variables (herbaceous cover, riparian cover). 

The dummy variable corresponding to WHRA ranked consistently 
higher than the other parks. Finally, the dummy variable associated with 
informal trails (identified by managers) ranked among the top quartile 
of importance measures for both models. The dummy variable associ
ated with informal trails (identified on the SGH) only ranked in the top 
quartile for model 2. 

3.3. Visual comparison 

Predictions were visualized in QGIS (Figs. 3 and 4). Condition classes 
were predicted at discrete points using RF; these points were joined to 
25-meter trail segments to visualize the results linearly. Both models 
depict similar spatial distributions of predicted condition classes, 
particularly for class 3 and class 4-5 predictions (Fig. 5). There was some 
disagreement between models at WRHA; model 2 made 54 class 1-2 
predictions and model 1 made no class 1-2 predictions. 

Both models report similar results regarding the locations of highly 
disturbed trails, where more than 50 % of the length of the entire trail 
was predicted as condition class 4-5. These trails are potentially at risk of 
severe trail degradation (Fig. 6). ALWO and CCSP contained 21 and 5 
highly disturbed trails, respectively. Similarly, ALWO and CCSP contain 
20 and 6 moderately disturbed trails, where 25–50 % of the trail was 
categorized as class 4-5. WHRA contained no highly or moderately 
disturbed trails. In total, 14.2 km of highly disturbed trails and 16.2 km 
of moderately disturbed trails were identified in ALWO and CCSP, 
respectively. 

4. Discussion 

4.1. Significance of the findings 

Our results demonstrate that RF models can be used to predict trail 
condition class with relatively high accuracy in our study areas, 
providing a less field-intensive method for monitoring trail condition in 
large nature reserves. Variable importance measures suggest that trail 
grade is the most significant determinant of trail condition and highlight 
additional site-specific factors that may influence trail condition in our 
study area. Specifically, activity type and use intensity may be more 
determinative of trail condition than some ecological and trail design 
parameters; this is in contrast to past work that suggests trail degrada
tion is primarily a product of poor or improper design (Marion, 2023; 
Marion and Wimpey, 2017). 

4.2. Model performance 

We show that RF models can be used to predict trail condition on 
unmonitored trails using a subset of field data with moderately high 
accuracy (~86.5 %). Further, these models can be used to identify 
highly disturbed trails (class 4-5 predictions) with a relatively high 
balanced accuracy (80.1 %). Further, our results suggest that including 
latitude, longitude, and distance to center reduce model performance 
marginally, contradicting past work by Hengl et al. (2018b) and sup
porting the claim that geolocated variables may lead to overfitting 
(Meyer et al., 2019). 

We used RF to model trail condition with a focus on identifying lo
cations of potential trail degradation. We argue that continued use of 
these trails, without appropriate management intervention, may result 
in potentially irreversible degradation. This assumption is complicated 

Table 4 
Sensitivity, specificity, and balanced accuracy (by class) for each model (model 
1 includes geolocated predictors, model 2 does not).   

Class 1-2 Class 3 Class 4-5 

Value Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Sensitivity 52.83 
% 

56.60 
% 

95.74 
% 

94.41 
% 

59.64 
% 

64.46 
% 

Specificity 99.41 
% 

98.94 
% 

58.90 
% 

63.47 
% 

96.45 
% 

95.77 
% 

Balanced 
Accuracy 

76.12 
% 

77.77 
% 

77.32 
% 

78.94 
% 

78.05 
% 

80.11 
%  
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Fig. 2. The top 20 predictors of trail degradation (condition class 4-5) by AUC.  

Fig. 3. Side-by-side comparison of predicted condition classes for CCSP and ALWO.  
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Fig. 4. Side-by-side comparison of predicted condition classes for WHRA.  

Fig. 5. Areas of disagreement between the models at each study site.  
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by the use-impact relationship in recreation ecology, which states that 
the relationship between visitor use and ecological disturbance gener
ally follows a sigmoid curve (Monz et al., 2013). Per this relationship, 
the disturbed trails identified here may not experience further degra
dation, whereas class 2 and 3 trails may continue to degrade until class 4 
or 5 status is reached. Continued trail monitoring will be necessary to 
confirm the condition of these trails. 

4.3. Variable importance 

Trail grade was ranked as the most important variable for deter
mining trail condition in both models, concordant with past trail science 
research (Marion, 2023; Olive and Marion, 2009). Trade grade (local) 
was consistently ranked slightly higher than the trail-averaged grade, 
suggesting that the influence of trail grade on trail condition occurs at 
smaller spatial scales. Trail maintenance efforts should focus on 
ensuring that trail grades are within the recommended threshold of 
along the entire length of the trail (Marion and Wimpey, 2017). 

Curiously, trail slope alignment (TSA) did not appear in the top 20 
importance values for either model despite evidence and best practices 
that state that TSA does influence trail condition (Meadema et al., 2020; 
Webber and IMBA, 2007). Likely, TSA is an important determinant of 
trail condition in many locations, but our model did not identify it as 
such in this landscape, potentially due to discrepancies in the scale at 
which TSA was calculated and the scale at which this phenomenon in
fluences trail degradation. 

In both models, pedestrian- and bike-use intensity ranked in the top 
quartile in terms of importance values, with pedestrian-use intensity 
ranked higher than bike-use intensity. These results suggest that 
pedestrian-use intensity may be more determinative of trail condition 
than bike-use intensity. An alternative explanation for these results is 
the weak correlation between bike-use intensity and trail counter 

measurements; thus pedestrian-use intensity derived from the SGH may 
be a more valid estimate of use than bike-use intensity. Finally, use- 
related predictors scored higher than nearly all ecological predictors 
in both models, suggesting that use intensity may be more determinative 
of trail condition than previously thought (Marion, 2023; Olive and 
Marion, 2009). These results provide further justification for using the 
SGH to monitor trail use; particularly when the location of use, activity 
type, and use-intensity are of interest. 

NDVI (at the sample point and trail-averaged) was the ecological 
parameter that received the highest importance values for class 4-5 
predictions, suggesting that NDVI may be more determinative of trail 
condition than vegetation coverage and corroborates the results. 
Furthermore, NDVI (trail-averaged) reported a higher importance value 
compared to NDVI at the sampling point. This may provide evidence 
that the effect of vegetation on trail condition is more pronounced at the 
scale of an entire trail, not at a specific location. In addition, interactions 
between use intensity and NDVI (trail-averaged) may exist due to 
preferences for using shaded trails, especially during hot summer 
months. Recreation ecology has not yet explored multiscale and cross- 
scale interactions between ecological and use-related variables; future 
research could illuminate these associations. 

Finally, latitude, longitude, and distance to center were ranked 
among the top 6 most important predictors in model 1. Given that model 
2 (without these geolocated variables) slightly outperformed model 1, 
this provides further evidence that geolocated variables likely produce 
overfitting in random forest models (Meyer et al., 2019). 

4.4. Recommendations for RF models in recreation management research 

We recommend selecting continuous representations of environ
mental, managerial, and use-related variables when using RF models in 
recreation management research. Additionally, we recommend taking 

Fig. 6. A map of highly and moderately disturbed trails; defined by the proportion of class 4-5 predictions within an individual trail.  
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precautions to improve the balance of data distributions (where 
appropriate) and reporting class-specific performance metrics when 
imbalanced data are used in RF classification problems. These practices 
are vital for developing rigorous RF models that are minimally biased by 
the characteristics of predictor variables and data structure. Further, we 
find that including geolocated variables leads to overfitting and slightly 
reduces model performance; such variables should not be included in RF 
models. Finally, we promote the SGH as a source of visitor use data, 
particularly in urban-proximate and fitness-oriented locations or when 
existing visitor use data are insufficient or unavailable. When using SGH 
data, we recommend reporting correlations to ground-truthed data. 

4.5. Management implications 

Trail degradation is considered permanent and irreversible; there
fore, early intervention is needed to mitigate or reduce disturbed trails. 
This study identified 30 km of trails in three urban-proximate nature 
reserves that are potentially vulnerable to degradation due to less sus
tainable design and/or levels or types of use incompatible with the 
design. By identifying potentially disturbed trail segments, managers 
can mitigate or reduce future trail degradation by modifying levels and 
locations of use, hardening the trails, modifying visitor behavior 
through education, and/or closing or rerouting certain trails (Marion, 
2023). In many cases, proactive management and intervention are 
required to maintain sustainable trails for the benefit of outdoor recre
ationists, ecosystem components, and park managers alike. Using RF 
models to predict trail condition reduces the time and effort required to 
monitor recreational trails; identifying determinants of trail degradation 
using RF models may help inform intervention and maintenance that 
takes local environmental, managerial, and use-related factors into ac
count. Monitoring the condition of recreational trails is a 
time-consuming process when done in situ; predictive modeling tech
niques significantly reduce the time and effort required to manage rec
reational trails. 

5. Conclusion 

We used RF models and field-mapped data on trail condition to 
predict trail degradation in three southern California urban-proximate 
nature reserves. The results identify 30 km of trails in two nature re
serves that managers may want to consider remediating, rerouting, or 
closing altogether, depending on the extent of trail degradation. We 
discuss the importance of the intentional design, application, and 
interpretation of RF models in a recreation management context. We 
find the Strava Global Heatmap to be an appropriate source of data on 
visitor use location, acvitity type, and use intensity; these data are 
particularly useful in random forest models due to their numeric struc
ture. This investigation contributes to an expanding body of literature on 
appropriate ways to use RF on spatial-ecological data in recreation 
management research, providing evidence for how predictive models 
may aid in managing and monitoring recreation resources. 
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